Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Evaluation for the transient Burst property of austenitic steel fuel Claddings irradiated as the MONJU type Fuel Assemblies (MFA-1&MFA-2)in FFTF

; ; Sakamoto, Naoki; *; Akasaka, Naoaki;

JNC TN9400 2000-095, 110 Pages, 2000/07

JNC-TN9400-2000-095.pdf:13.57MB

The effects of high fluence irradiation and swelling on the transient burst properties of austenitic steel fuel claddings; PNC316 and 15Cr-20Ni stcel, which were irradiated as the MONJU type fuel assemblies (MFA-1&MFA-2) in the FFTF reactor, were investigated. The temperature-transient-to-burst tests were conducted on a total of eight irradiation conditions. Fractographic examination and TEM observation were performed in order to evaluate the effect of high dose irradiation on the transient burst property and the relation between failure mechanism and microstructural change during rapid (ramp) heating. The results of the PIE showed that there was no significant effect of irradiation on the transient burst properties of these fuel claddings under the irradiation conditions examined. the results obtained in this study are as follows; (1)The rupture temperature of the irradiated PNC316 fuel cladding of MFA-1 was as same as that of our previous works for the fluence range up to 2.13$$times$$10$$^{27}$$ n/m$$^{2}$$. There was no noticeable decrease in rupture temperature with increasing fluence in lower hoop stress region($$sim$$100MPa). (2)The rupture temperature of the irradiated 15Cr-20Ni fuel cladding of MFA-2 was almost as same as that of as-received cladding for the hoop stress range up to about 200MPa. The rupture temperature did not decrease significantly with fluence. (3)The rupture temperature of the irradiated PNC316 cladding tested at hoop stress 69MPa, which was the design hoop stress for MONJU fuel, was 1055.6$$^{circ}$$C. This suggested that the design cladding maximum temperature limit for MONJU (830$$^{circ}$$C) was conservative. (4)There was no obvious relation between rupture temperature, swelling and microstructural change during transient heating under the irradiation conditions examined.

JAEA Reports

Irradiation creep equation of the advanced austenitic stainless steels

Mizuta, Shunji; ;

JNC TN9400 99-082, 60 Pages, 1999/10

JNC-TN9400-99-082.pdf:1.52MB

The density measurement of the internal creep specimens irradiated in FFTF/MOTA (Fast Flux Test Facility / Material open Test Assembly) was conducted MMF (Materia1 Monitoring Facility) and accurate separation of swelling strain from total strain leaded in the derivation of the irradiation creep coefficients. Irradiation creep coefficients for PNC 316, 15Cr-20Ni base S.S. and 14Cr-25Ni base S.S. were systematically expressed, while thermal creep coefficients K, under irradiation were separately expressed for above three steels. The results obtained are follows, (1)The effect of stress induced swelling was recognized in the temperature range from 405 to 605$$^{circ}$$C. The swelling in high stress specimens have a tendency to increasing swelling. (2)The irradiation creep coefficients derived from PNC316 and l5Cr-20Ni are similar to that of derived from 20%CW316S.S., CW316Ti and CW15-15Ti which were reported by other authors. (3)The irradiation creep coefficient derived from gas pressurized tube irradiation using FFTF/MOTA expressed appropriately irradiation creep strain from fuel pins using FFTF/MFA-2(15Cr-2ONi base S.S.).

2 (Records 1-2 displayed on this page)
  • 1